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In studies of hydrodynamic turbulence and nonequilibrium systems, it has been demonstrated that the
observed non-Gaussian probability density functions are often described effectively by a superposition of
Gaussian distributions with fluctuating variances. Based on this framework, we propose a general method to
characterize intermittent and non-Gaussian time series. In our approach, an observed time series is assumed to
be described by the multiplication of Gaussian and amplitude random variables, where the amplitude variable
describes the variance fluctuation. It is shown analytically that statistical properties of the log-amplitude
fluctuations can be estimated using the logarithmic-absolute moments of the observed time series. This method
is applicable to a wide variety of symmetric unimodal distributions with heavy tails in order to quantify the
deviation from a Gaussian distribution. By analyzing random cascade-type processes and superstatistical non-
Gaussian models with power-law tails, we demonstrate that our method can provide detailed characterization
in a wide range of non-Gaussian fluctuations.
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I. INTRODUCTION

Recently, using statistical tools developed in hydrody-
namic turbulence and nonequilibrium systems, numerous
studies have been conducted to establish universal properties
of intermittent fluctuations in a wide range of complex sys-
tems �1–8�. A remarkable property of intermittent fluctua-
tions is inhomogeneity of variance, which results in non-
Gaussian probability density functions �PDFs�. To charac-
terize such non-Gaussian fluctuations, it has been demon-
strated that non-Gaussian PDFs are often described effec-
tively by a superposition of Gaussian distributions with fluc-
tuating variances �1,2�.

In the study of the velocity difference between two points
in fully developed turbulent flows, Castaing et al. �1� intro-
duced the following equation:

P�x� = �
0

� 1

�
PL� x

�
�G�ln ��d�ln �� , �1�

where it is assumed that PL is the standard Gaussian distri-
bution and G is a distribution describing the fluctuation of
the standard deviations. Under Kolmogorov’s refined simi-
larity hypothesis, G is assumed to be an infinitely divisible
distribution. In their study, Castaing et al. focused mainly on
the estimation of the variance of G and its scale behavior.
This approach enables us to characterize a wide range of
intermittent fluctuations, and has been applied in diverse
fields such as econophysics �3�, geophysics �4�, and physiol-
ogy �9�. However, in the previous studies, the estimation of
the variance of G depends on a priori knowledge of the
functional form of G�ln �� such as log-normality, which
would limit the applicability of this approach. The existing
theories on intermittency in developed turbulence have pre-
dicted both shapes of G and scale dependence of its moments
�1,10�. Thus, it is required to develop a method for determin-
ing statistical properties of G from the observed data.

As pointed out by Jung and Swinney �11�, Eq. �1� can be
linked with superstatistics by Beck and Cohen �2� that has
also been applied to a wide range of nonequilibrium systems

�see �2�, and references therein�. In addition, Friedrich et al.
provided an exact solution of a generalized Kramers-Fokker-
Planck equation �12�, which can be given by superpositions
of Gaussian distributions with varying variances. Hence, a
general problem that is of great interest in experimental ap-
plications is how to objectively characterize the variance
fluctuations described by G in Eq. �1�. To solve this problem,
we propose a method for estimating the variance and higher
moments of G from the observed time series without as-
sumptions on the shape of G �13�. In other words, we pro-
vide a systematic method to determine the shape of G based
on only the observed time series.

Moreover, our method is applicable to a wide range of
symmetric unimodal distributions with heavy tails, including
symmetric power-law distributions, P�x��	x	−� with 1��
In general, the variance of G in Eq. �1� for a heavy tailed
distribution can be interpreted as a measure of the deviation
from a Gaussian distribution.

II. LOG-AMPLITUDE VARIANCE
AND HIGHER MOMENTS

To explain our approach, let us assume that an observed
stationary time series 
xi� with zero mean is described by a
multiplicative stochastic process,

Xi = Wie
Yi, �2�

where W is a Gaussian random variable with zero mean, and
Y is the other random variable independent of W. In this
case, the PDF of X has the same functional form as Eq. �1�,
where G�y� is the PDF of Y. Here, we refer to 
Yi� as the
log-amplitude fluctuation.

To characterize the log-amplitude fluctuation, we con-
sider the variance and higher central moments of Y, �n
= ��Y − �Y
�n
, where �·
 denotes the statistical average. By
the calculation of the logarithmic-absolute moments of X and
the assumption of Eq. �2�, we can obtain the following rela-
tions for �n:
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�2 = ��ln	X	 − �ln	X	
�2
 −
�2

8
, �3�

�3 = ��ln	X	 − �ln	X	
�3
 +
7

4
��3� , �4�

�4 = ��ln	X	 − �ln	X	
�4
 −
3

4
�2�2 −

7

64
�4, �5�

where ��n� is the Riemann zeta function ���3�
=1.202 056 9. . .�. Note that the logarithmic-absolute mo-
ments of X do not depend on the variance of X, because

ln	�0X	 − �ln	�0X	
 = ln	X	 − �ln	X	
 , �6�

where �0 is an arbitrary constant. Furthermore, we can ob-
tain the estimator of the higher-order moment, if required.

Our key idea is to use logarithmic-absolute moments
in order to characterize the non-Gaussian PDF of X. If
logarithmic-absolute moments of X are finite, it is possible
to define the log-amplitude moments. Even in the case
where the PDF of X has power-law tails, P�x��	x	−� with
1��	3 the logarithmic-absolute moments of X are finite,
although the variance of X is undefined or infinite. Therefore,
a wide range of symmetric unimodal distributions with
heavy tails can be characterized by our approach. In other
words, the log-amplitude variance �2 �Eq. �3�� is simply in-
terpreted as the difference in the second logarithmic-absolute
moment between the observed non-Gaussian and Gaussian
PDFs, because the second logarithmic-absolute moment of a
Gaussian distribution equals �2 /8. Thus, �2 can be used as a
measure of the deviation from a Gaussian distribution.

III. NUMERICAL EXAMPLES

To test our approach, we introduce illustrative examples
of non-Gaussian stochastic processes and carry out numeri-
cal experiments.

A. Independent and identically distributed
non-Gaussian variables

As a first step, we consider a stochastic process described
by independent and identically distributed �IID� variables.
The first example is a multiplicative log-normal process �14�
based on experimental observations in the study of the tur-
bulent velocity field �1�, solar wind �4�, foreign exchange
rate �3�, stock index �8�, and human heartbeat �7,15�. Ne-
glecting the detailed structure of the intermittent dynamics,
we mimic the PDFs observed in the log-normal processes.
For comparison, we also discuss a multiplicative log-Poisson
process. In the log-normal and log-Poisson processes, fluc-
tuations of the standard deviations are assumed to obey log-
normal and log-Poisson distributions, respectively.

In the log-normal process 
Xi
�LN�� the random variable

X�LN� with zero mean is described by

X�LN� = C�We�Y , �7�

where both W and Y are independent standard Gaussian ran-
dom variables with zero mean and unit variance, and C� is a

scale parameter. In this process, the non-Gaussian nature is
determined by the parameter �, which is the same as a non-
Gaussian parameter 
 defined in Ref. �14�. If X�LN� is stan-
dardized, C� should be chosen as C�=exp�−�2�. In this case,
its log-amplitude moments are �2=�2, �3=0, and �4=3�4.

In the log-Poisson process 
Xi
�LP�� the random variable

X�LP� is described by

X�LP� = C
WerP, �8�

where W are independent standard Gaussian random vari-
ables, P are independent Poisson random variables with
mean 
 and variance 
, r is a real-valued parameter, and Cr
is a scale parameter. If X�LP� is standardized, Cr should be
chosen as Cr=exp
−
�exp�2r�−1� /2�. In this case, its
log-amplitude moments are �2=r2
, �3=r3
, and �4
=r4
�1+3
�.

The next example is a stochastic process 
Xi
�SS�� based on

so-called superstatistics �2�. Superstatistics considers an in-
homogeneous driven nonequilibrium system that consists of
many subsystems with different values of some intensive pa-
rameter � �e.g., the inverse effective temperature�. Each sub-
system is assumed to reach local equilibrium very quickly. In
this case, if the local equilibrium distribution is Gaussian, we
obtain

P�x� = �
0

�

��PL���x�f���d� , �9�

where PL�x� is the standard normal distribution and f��� is
the distribution of �. If f��� is a log-normal distribution, the
PDF of superstatistics has the same form as the above log-
normal process �11�.

Here, we choose the �2 distribution with degree k,

f��� =
1


�k/2�� k

2�0
�k/2

��k � 2�−1e−�k� � 2�0� , �10�

which is one of the universality classes in superstatistics �2�.
In this case, Eq. �9� results in the Student’s t distribution,
which exhibits power-law tails, P�x��	x	−�k+1� for large 	x	.
In this superstatistical process, the random variable X�SS� is
described as

X�SS� = W� k

�0Q
, �11�

where W are independent standard Gaussian random vari-
ables, Q are independent �2 random variables with k degrees
of freedom. When k�2, X�SS� can be standardized by �0
=k / �k−2�. In Castaing’s description �Eq. �1��, the corre-
sponding G�y� is obtained as

G�y� =
2


�k/2�� k

2�0
�k/2

exp�− ky −
k

2�0
e−2y� . �12�

Thus, X�SS� are described as X�SS�=WeY, where Y obey
Eq. �12�. In this case, its log-amplitude moments are
�2=��1��k /2� /4, �3=−��2��k /2� /8, and �4= �3��1��k /2�2

+��3��k /2�� /16, where ��n��x� is nth derivative of Euler’s psi
function ��x�.
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It is important to note that the log-amplitude moments �n
can be defined for k�0. When k=1, the PDF of X�SS� re-
duces to a Cauchy distribution,

P�x� =
�

��x2 + �2�
, �13�

where the scale parameter � is chosen as �=1 /��0. Because
this distribution has power-law tails, P�x��	x	−2, for large
	x	, its second and higher moments are infinite. On the other
hand, all of the log-amplitude moments �n are finite, which
demonstrates that the log-amplitude statistics is applicable to
a variety of heavy tailed distributions.

As shown in Fig. 1, the center parts of the PDFs have
similar shapes, if the values of �2 are equal. To test the
estimators �n, we numerically generate data sets using the

above models, and then estimate the value of �n. To estimate
the logarithmic-absolute moments, ��ln	X	− �ln	X	
�n
, in Eqs.
�3�–�5�, here we use the following estimators,

Mn =
1

N
�
i=1

N

�ln	Xi	 − M1�n �n = 2,3,4� , �14�

where

M1 =
1

N
�
i=1

N

ln	Xi	 . �15�

As shown in Fig. 2, the theoretical values are estimated
well from the observed time series. In particular, in the plot
of �3 vs �2 �Fig. 2�d��, we find significant differences be-
tween the models, although in the plot of �4 vs �2 �Fig. 2�e��
we find no differences between the log-normal and log-
Poisson processes.

To evaluate the error of the estimate of �n, we study the

mean squared error �MSE�. The MSE of an estimator �̂ of
the parameter � is defined as

���̂� = ���̂ − ��2
 . �16�

For the estimator of �2 and �3, the MSEs are evaluated as

���̂2� =
1

n
��4 − �2

2 +
�2

2
�2 +

3

32
�4� + O� 1

n2� , �17�

���̂3� =
1

n
��6 +

15

8
�2�4 − �3

2 +
77

2
��3��3 +

105

64
�4�2

+
441

16
��3�2 +

139

512
�6� + O� 1

n2� . �18�

Equation �17� implies that the statistical error of the estimate
of �2 does not depend sensitively on the value of �2. As
shown in Fig. 3�a�, the MSEs ���̂2� for Gaussian and Cauchy
�X�SS� with k=1� distributions are of the same order, although
the value of �2 for the Cauchy distribution, �2=1.2337. . ., is

FIG. 1. �Color online� Standardized PDFs of log-normal �X�LN��,
log-Poisson �X�LP��, and superstatistical �X�SS�� IID processes with
the same log-amplitude variance �2, where X�LN�, X�LP�, and X�SS�

are defined by Eqs. �7�, �8�, and �11�, respectively. Solid lines
�green�: X�SS� with k=3 �top� and k=6 �bottom�; dashed lines: X�LP�

with 
=20 and r=��2 /
; solid lines �black�: X�LN� with �=��2;
dot-dashed lines: X�LP� with 
=20 and r=−��2 /
. The PDFs are
shifted in vertical directions for convenience of presentation.

FIG. 2. Estimation of �n for
log-normal �X�LN�, circles�, log-
Poisson �X�LP�, triangles�, and su-
perstatistical �X�SS�, squares� IID
processes, where 
=20 for X�LP�.
The sample means of �n were es-
timated from 100 samples of
length N=106. The error bars in-
dicate the sample standard devia-
tion. The solid lines indicate the
theoretical predictions.
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considerably larger than �2=0 for the Gaussian distribution.
This is an advantage of our method compared to moment-
based characterization using �	X	n
. As the order n of �n in-
creases, the MSE ���̂n� rapidly increases. As shown in Fig.
3�b�, to estimate accurate values of the higher log-amplitude
moments, very large data sets are required.

B. Random cascade-type processes

It is important to note that the characterization of the non-
Gaussian PDF at a fixed scale is not sufficient to provide a
deeper insight into intermittent dynamics. For instance, the
time series shown in Figs. 4�a� and 4�b� have the same PDF
P�x�, although the properties of the variance inhomogeneity
are quite different. A standard approach to characterize the
intermittent time series is to describe how the shape of the
PDF changes across scales. That is, from an observed time
series 
Xi�, consider the PDF of the partial sum �sZi
=� j=1

s Xi+j, where s indicates the scale. In other words, �sZi is
equal to the increment of the integrated series Zn=�i=1

n Xi. On
the characterization of the PDF of �sZ, the existing theories
have predicted the shapes of G in Eq. �1� and the scale de-
pendence of the moments �1,2,10�. To discuss this point in
more detail, we consider intermittent time series of multipli-
cative cascade processes.

Recently, we proposed a simple model of the cascade pro-
cess, as described by Eq. �2� �14�. The numerical procedure
to generate the time series is as follows: first, we generate a

time series 
Wi�i=1
2m

of Gaussian white noise with zero mean
and variance �0

2, where m is the total number of cascade
steps. In the first cascade step �j=1�, we divide the whole
interval into two equal subintervals, and then multiply Wi in
each subinterval by random weights exp�Y�1��k�� �k=0,1�,
where Y�j� are identical independent random variables. In the
framework of Kolmogorov’s refined similarity hypothesis,
the PDF of Y�j� is assumed to be an infinitely divisible dis-
tribution G0�y�. In the next cascade step �j=2�, we further
divide each subinterval into two equal subintervals, and ap-
ply the random weights exp�Y�2��k�� �k=0,1 ,2 ,3�. The same
procedure is repeated, and after m cascade steps, the time
series 
Xi� is given by

Xi = Wi exp�
j=1

m

Y�j��� i − 1

2m−j �� , �19�

where �·� is the floor function. If the PDF of Y�j� is an infi-
nitely divisible distribution G0�y�, the time series 
Xi� is de-

FIG. 5. Scale dependence of �2 and �3 for scale-invariant cas-
cade �circles�, non-scale-invariant cascade �triangles� and IID
�squares� processes, where �2�1�=0.6 for all processes, m=16 for
cascade processes, and �=0.5 for non-scale-invariant cascade pro-
cesses. The left and right panels show the log-normal and log-
Poisson processes, respectively. The variance of Poisson random
variables at s=1 is 
=20. The sample means of �n were estimated
from 100 samples. The error bars indicate the sample standard
deviation. The solid and dashed lines indicate the theoretical
predictions.

FIG. 3. Dependence of the mean squared error on the data
length N. �a� The MSE of �2 for log-normal �X�LN��, superstatistical
�X�SS��, and Gaussian IID processes, where �2=0.6 for X�LN� and
k=1 for X�SS�. The averages of the MSE for X�LN� �circles�, X�SS�

�squares�, and Gaussian variables �diamonds� were computed from
200 samples. �b� The MSE of estimators of �n for X�LN� with �2

=0.6. The averages of the MSE of �2 �open squares�, �3 �filled
squares�, and �4 �crosses� were computed from 200 samples. The
solid lines indicate the theoretical predictions �Eqs. �17� and �18��.

FIG. 4. Time series of log-normal processes. �a� IID process
�Eq. �7�� ��2=0.6�; �b� random cascade process �Eq. �19�� �m=16,
��Y�j�− �Y�j�
�2
=0.6 /m�.
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scribed by the same form of Eq. �2� as Xi=Wi exp Ȳi
�m�,

where Ȳi
�m�=� j=1

m Y�j� and its PDF is given by m-fold convo-
lutions of G0�y�. Moreover, if we approximate the distribu-
tion of the local sum of 
Xi� by a Gaussian, �sn

Z at scale

sn=2m−n is approximately given by �sn
Z=W̄�sn� exp Ȳ�sn�,

where W̄�sn�=�k=1
sn Wk and Ȳ�sn�=� j=1

n Y�j�.
In the study of developed turbulence, one of the main

statistical tools has been the multiscaling analysis of struc-
ture functions �10�. In our notations, the scaling of the struc-
ture functions Sq�s� is described as Sq�s�= �	�sZ	q
�s�q. In
our model, the moments of �sn

Z at scale sn=2m−n can be
estimated as

�	�sn
Z	q
 �

�2�0
2�q/2

��

�q + 1

2
�em��q�sn

q/2−��q�/ln 2, �20�

where ��q� is the cumulant-generating function of Y�j�.
Thus, this model has scaling exponents �q=q /2−��q� / ln 2.
In this case, the log-amplitude variance �2�s� of �sZi is es-
timated as

�2�s� � �2
�0��N − log2 s� � − ln s , �21�

where �2
�0� is the variance of Y�j�. In general, the necessary

condition of the existence of scaling exponents �q for ��q�
�0 is that variance and nonzero cumulants of Ȳ�s� are pro-
portional to −ln s.

Different from the logarithmic dependence, a power-law
dependence of �2�s� has also been reported in experimental
study �1,4,8�. As a phenomenological model exhibiting the
power-law dependence, we assume a non-scale-invariant
cascade process �16,17�, where the variance of Y�j� depends
on the cascade step j as ��Y�j��2
�2��j−1�. In this case, the
scale dependence of �2�s� is estimated as

�2�s� � �2�ms−� − 1

2� − 1
��2

�0� � s−�. �22�

To confirm the theoretical predictions, we numerically
study log-normal and log-Poisson cascade processes, where
Y�j� are Gaussian random variables and Poisson random vari-
ables multiplied by a real-valued parameter. A comparison
between the log-normal and log-Poisson processes including
an IID time series is shown in Fig. 5. In both cases, the scale
dependences of �2 agree well with the theoretical prediction
�Figs. 5�a�–5�d��. In addition, the deviation from log-
normality is measured by �3. For the log-normal processes
shown in Fig. 5�e�, the values of �3 are close to zero across
the scales. Note that �3 of �sZ �s�1� for the log-normal
processes is not exactly equal to zero, because the PDFs of
the log-normal processes are not stable distribution �14�. On
the other hand, for log-Poisson processes shown in Fig. 5�f�,
we can see the deviation from �3=0 and the logarithmic
dependence of �3 for the scale-invariant cascade process
�Fig. 5�f��.

IV. CONCLUSION

We proposed log-amplitude statistics to characterize non-
Gaussian time series. Both turbulence statistics by Castaing
et al. �1� and superstatistics by Beck and Cohen �2� have
been very successful in describing non-Gaussian fluctua-
tions. Including such examples, our method can be used to
characterize non-Gaussian fluctuations. A crucial advantage
in our approach is that a priori knowledge of the variance
fluctuations is not assumed. The log-amplitude moments �n
can provide a systematic way to quantify the shape of G in
Eq. �1�.

In addition, even in the case where the non-Gaussian
PDF has power-law tails, P�x��	x	−�, with 1��, the log-
amplitude moments can be defined. Hence, our method is
applicable to a wide range of symmetric unimodal distribu-
tions with heavy tails.
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